Search

当前可用的 DFT/NLDFT 模型

Micromeritics 现将发布一系列用于表征多孔碳的全新 NLDFT 模型。 这些模型以 Jacek Jagiello 和 James Olivier 的前沿工作为基础,针对孔隙的二维有限元几何体采用 NLDFT 技术,从而根据吸附等温线计算材料的孔径分布。 这项新技术首次发表于《物理化学期刊》,用于分析氮掺杂碳。

DFT/NLDFT 模型

DFT 型号DFT 型号说明
mod001.df2Ar@87-Carbon, Slit pores, Original DFT
mod000.df2N2@77-Carbon, Slit pores, Original DFT
mod003.df2N2 - Modified Density Functional
mod010.df2N2@77-Oxide Cyl Pores, Strong Potential
mod011.df2CO2 @ 273 on Carbon, Slit Pores
mod012.df2AR - Modified Density Functional
mod013.df2N2@77-Oxide Cylindrical Pores,Tarazona
mod014.df2N2@77 Cyl Pores in Pillared Clay, NLDFT
mod015.df2Ar@87 in Oxide Cyl Pores, NLDFT
mod023.df2Ar@77 on Carbon Slit Pores by NLDFT
mod024.df2N2@87 on Carbon Slit Pores by NLDFT
mod102.df2Ar@77 on Zeolite Cyl Pores, NLDFT
mod200.df3N2 @ 77 on Carbon Slit Pores by NLDFT
mod201.df2N2@77-Carb Finite Pores, As=4, 2D-NLDFT
mod202.df2N2@77-Carb Finite Pores, As=6, 2D-NLDFT
mod203.df2Ar@87 on Carbon Slit Pores by NLDFT
mod204.df2Ar@87-Carb Finite Pores, As=4, 2D-NLDFT
mod205.df2Ar@87-Carb Finite Pores, As=6, 2D-NLDFT
mod206.df2N2@77-Carb Finite Pores, As12, 2D-NLDFT
mod207.df2Ar@87-Carb Finite Pores,As=12, 2D-NLDFT
mod225.df2N2@77-Carb Cyl Pores, SWNT, NLDFT
mod226.df2N2@77-Carb Cyl Pores, MWNT, NLDFT
mod227.df2Ar@87-Carb Cyl Pores, SWNT, NLDFT
mod228.df2Ar@87-Carb Cyl Pores, MWNT, NLDFT
mod229.df2Ar@77-Zeolites, H-Form, NLDFT
mod230.df2Ar@77-Zeolites, Me-Form, NLDFT
mod241.df2GCMC CO2 Carbon slit
mod250.df2CO2@273-Carbon Slit Pores, 10 atm,NLDFT
mod251.df2Ar@87-Zeolites, H-Form, NLDFT
mod252.df2Ar@87-Zeolites, Me-Form, NLDFT
mod255.df2HS-2D-NLDFT, Carbon, N2, 77
mod400.df3CO2@273-Carbon, NLDFT
mod410.df2HS-2D-NLDFT, Carbon, O2, 77
mod420.df2HS-2D-NLDFT, Carbon, Ar, 87
mod425.df2HS-2D-NLDFT, Carbon, CO2, 273
mod430.df2HS-2D-NLDFT, Carbon, H2, 77
mod440.df2HS-2D-NLDFT, Carb Cyl Pores (ZTC) N2@77
mod450.df2HS-2D-NLDFT, Carb Cyl Mesopores, N2@77
mod600.df2MOF1-Ar Cylindrical Mesopores, 2D-NLDFT
mod610.df2HS-2D-NLDFT, Cylindrical Oxide, Ar, 87
mod300.df2NLDFT, Ultramicroporous Zeolites, O2, 77
mod300.df3NLDFT, Ultramicroporous Zeolites, O2, 77
mod300.df3NLDFT, Ultramicroporous Zeolites, O2, 77
mod310.df2NLDFT, Ultramicroporous Zeolites, H2, 77
mod310.df3NLDFT, Ultramicroporous Zeolites, H2, 77

下载 DFT 模型

  1. 下载模型包
  2. 将模型复制到相应的 Micromeritics 模型目录
  3. 重新启动 Micromeritics 应用程序

模型参考文献

  1. P. Tarazona. Free-energy density functional for hard spheres. Phys. Rev. A, 31(4):2672–2679, Apr 1985.
  2. P. Tarazona, U. Marini Bettolo Marconi, and R. Evans. Phase equilibria of fluid interfaces and confined fluids – non-local versus local density functionals. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 60(3):573–595, 1987.
  3. Christian Lastoskie, Keith E. Gubbins, and Nicholas Quirke. Pore size distribution analysis of microporous carbons: a density functional theory approach. The Journal of Physical Chemistry, 97(18):4786–4796, May 1993.
  4. P. Tarazona. A density functional theory of melting. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 52(1):81–96, 1984.
  5. James P. Olivier. Modeling physical adsorption on porous and nonporous solids using density functional theory.Journal of Porous Materials, 2(1):9–17, July 1995.
  6. James P. Olivier. Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data. Carbon, 36(10):1469–1472, October 1998.
  7. M. W. Maddox, J. P. Olivier, and K. E. Gubbins. Characterization of mcm-41 using molecular simulation: Heterogeneity effects.Langmuir, 13(6):1737–1745, Mar 1997.
  8. M. Jaroniec, M. Kruk, J.P. Olivier, and S. Koch. A new method for the accurate pore size analysis of mcm -41 and other silica based mesoporous materials. In Unger K.K., Kreysa G., and J. P. Baselt, editors, Proceedings of the Fifth International Symposium on the Characterization of Porous Solids, COPS-V, volume 128 of Studies in Surface Science and Catalysis, page 71. Elsevier, 2000.
  9. James P. Olivier and Mario L. Occelli. Surface area and microporosity of a pillared interlayered clay (pilc) from a hybrid density functional theory (dft) method. The Journal of Physical Chemistry B, 105(22):5358–5358, May 2001.
  10. M. L. Occelli, J. P. Olivier, J. A. Perdigon-Melon, and A. Auroux. Surface area, pore volume distribution, and acidity in mesoporous expanded clay catalysts from hybrid density functional theory (dft) and adsorption microcalorimetry methods.Langmuir, 18(25):9816–9823, Nov 2002.
  11. Mario L. Occelli, James P. Olivier, Alice Petre, and Aline Auroux. Determination of pore size distribution, surface area, and acidity in fluid cracking catalysts (fccs) from nonlocal density functional theoretical models of adsorption and from microcalorimetry methods. The Journal of Physical Chemistry B, 107(17):4128–4136, Apr 2003.
  12. M. L. Occelli, J. P. Olivier, A. Auroux, M. Kalwei, and H. Eckert. Basicity and porosity of a calcined hydrotalcite-type material from nitrogen porosimetry and adsorption microcalorimetry methods.Chemistry of Materials, 15(22):4231–4238, Oct 2003.
  13. Jacek Jagiello and James P. Olivier. A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. The Journal of Physical Chemistry C, 113(45):19382–19385, Oct 2009.
  14. J. Jagiello and J. P. Olivier, 2D-NLDFT Adsorption Models for Carbon Slit-Shaped Pores with Surface Energetical Heterogeneity and Geometrical Corrugation. Carbon (2013) 55, 70-80.
  15. J. Jagiello, J. Kenvin, J. Olivier, A. Lupini, C. Contescu, Using a new finite slit pore model for NLDFT analysis of carbon pore structure, Adsorption Science & Technology 29 (2011) 769-780.
  16. J. Jagiello, J.P. Olivier, Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation, Adsorption 19 (2013) 777-783
  17. J. Jagiello, J. Kenvin, Consistency of Carbon Nanopore Characteristics Derived from Adsorption of Simple Gases and 2D-NLDFT Models. Advantages of Using Adsorption Isotherms of Oxygen (O2) at 77 K , Journal of Colloid and Interface Science 542 (2019) 151-158.
  18. J. Jagiello, C. Ania, J.B. Parra, C. Cook, Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2, Carbon 91 (2015) 330-337.
  19. J. Jagiello, J. Kenvin, C.O. Ania, J.B. Parra, A. Celzard, V. Fierro, Exploiting the adsorption of simple gases O2 and H2 with minimal quadrupole moments for the dual gas characterization of nanoporous carbons using 2D-NLDFT models, Carbon 160 (2020) 164-175.
  20. J. Jagiello, J. Kenvin, A. Celzard, V. Fierro, Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models, Carbon 144 (2019) 206-215.
  21. J. Jagiello, T. Kyotani, H. Nishihara, Development of a simple NLDFT model for the analysis of adsorption isotherms on zeolite templated carbon (ZTC), Carbon 169 (2020) 205-213.
  22. P. Li, Q. Chen, T.C. Wang, N.A. Vermeulen, B.L. Mehdi, A. Dohnalkova, N.D. Browning, D. Shen, R. Anderson, D.A. Gómez-Gualdrón, F.M. Cetin, J. Jagiello, A.M. Asiri, J.F. Stoddart, O.K. Farha, Hierarchically Engineered Mesoporous Metal-Organic Frameworks toward Cell-free Immobilized Enzyme Systems, Chem (2018) 4, 1022-1034.
  23. J. Jagiello, M. Jaroniec, 2D-NLDFT Adsorption Models for Porous Oxides with Corrugated Cylindrical Pores, Journal of Colloid and Interface Science 532 (2018) 588-597.